翻訳と辞書 |
Kontsevich invariant : ウィキペディア英語版 | Kontsevich invariant In the mathematical theory of knots, the Kontsevich invariant, also known as the Kontsevich integral of an oriented framed link, is a universal Vassiliev invariant in the sense that any coefficient of the Kontsevich invariant is of a finite type, and conversely any finite type invariant can be presented as a linear combination of such coefficients. It was defined by Maxim Kontsevich. The Kontsevich invariant is a universal quantum invariant in the sense that any quantum invariant may be recovered by substituting the appropriate weight system into any Jacobi diagram. ==Definition==
The Kontsevich invariant is defined by monodromy along solutions of the Knizhnik–Zamolodchikov equations.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Kontsevich invariant」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|